CALL FOR PAPERS Cytoskeletal Networks and the Regulation of Cardiac Contractility Developmental changes in passive stiffness and myofilament Ca sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth
نویسندگان
چکیده
Krüger, Martina, Thomas Kohl, and Wolfgang A. Linke. Developmental changes in passive stiffness and myofilament Ca sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291: H496–H506, 2006. First published May 5, 2006; doi:10.1152/ajpheart.00114.2006.—The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA ( 3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, stiffening their sarcomeres. Here we show that perinatal titin-isoform switching and corresponding passive stiffness (STp) changes do not occur in the hearts of guinea pig and sheep. In these species the shift toward “adult” proportions of N2B isoform is almost completed by midgestation. The relative contributions of titin and collagen to STp were estimated in force measurements on skinned cardiac muscle strips by selective titin proteolysis, leaving the collagen matrix unaffected. Titin-based STp contributed between 42% and 58% to total STp in late-fetal and adult sheep/guinea pigs and adult rats. However, only 20% of total STp was titin based in late-fetal rat. Titin-borne passive tension and the proportion of titin-based STp generally scaled with the N2B isoform percentage. The titin isoform transitions were correlated to a switch in troponin-I (TnI) isoform expression. In rats, fetal slow skeletal TnI (ssTnI) was replaced by adult carciac TnI (cTnI) shortly after birth, thereby reducing the Ca sensitivity of force development. In contrast, guinea pig and sheep coexpressed ssTnI and cTnI in fetal hearts, and skinned fibers from guinea pig showed almost no perinatal shift in Ca sensitivity. We conclude that TnI-isoform and titin-isoform switching and corresponding functional changes during heart development are not initiated by birth but are genetically programmed, species-specific regulated events.
منابع مشابه
Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth.
The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA (>3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( approximately 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, sti...
متن کاملTitin and Troponin: Central Players in the Frank-Starling Mechanism of the Heart
The basis of the Frank-Starling mechanism of the heart is the intrinsic ability of cardiac muscle to produce greater active force in response to stretch, a phenomenon known as length-dependent activation. A feedback mechanism transmitted from cross-bridge formation to troponin C to enhance Ca(2+) binding has long been proposed to account for length-dependent activation. However, recent advances...
متن کاملCardiac troponin I gene knockout: a mouse model of myocardial troponin I deficiency.
Troponin I is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. We deleted the cardiac isoform of troponin I by using gene targeting in murine embryonic stem cells to determine the developmental and physiological effects of the absence of this regulatory protein. Mice lacking cardiac troponin I were ...
متن کاملDeranged myofilament phosphorylation and function in experimental heart failure with preserved ejection fraction.
AIMS Heart failure (HF) with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality. Key alterations in HFpEF include increased left ventricular (LV) stiffness and abnormal relaxation. We hypothesized that myofilament protein phosphorylation and function are deranged in experimental HFpEF vs. normal myocardium. Such alterations may involve the giant elastic protein titi...
متن کاملModulation of Cardiac Function: Titin Springs into Action
Sympathetic stimulation has become a central tenet in our understanding of how cardiac contractility is dynamically altered to accommodate the changing demands of the organism. The mechanisms by which acute and chronic sympathetic stimulation of the heart modulates cardiac output remain incompletely understood, however. Beyond the increase in heart rate driven by sympathetic stimulation of the ...
متن کامل